1998 Semester 1 Multiple Choice

1. What is the *x*-coordinate of the point of inflection on the graph of $y = \frac{1}{3}x^3 + 5x^2 + 24$?

(A) 5 (B) 0 (C)
$$-\frac{10}{3}$$
 (D) -5 (E) -10

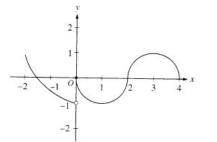
6. If $x^2 + xy = 10$, then when x = 2, $\frac{dy}{dx} =$

(A) $-\frac{7}{2}$ (B) -2 (C) $\frac{2}{7}$ (D) $\frac{3}{2}$ (E) $\frac{7}{2}$

х

8. Let *f* and *g* be differentiable functions with the following properties:

(i)
$$g(x) > 0$$
 for all
(ii) $f(0) = 1$

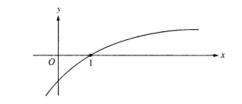

If h(x) = f(x)g(x) and h'(x) = f(x)g'(x), then f(x) =

(A) f'(x) (B) g(x) (C) e^x (D) 0 (E) 1

- 10. What is the instantaneous rate of change at x = 2 of the function f given by $f(x) = \frac{x^2 2}{x 1}$?
 - (A) -2 (B) $\frac{1}{6}$ (C) $\frac{1}{2}$ (D) 2 (E) 6

12. If
$$f(x) = \begin{cases} \ln x & \text{for } 0 < x \le 2 \\ x^2 \ln 2 & \text{for } 2 < x \le 4, \end{cases}$$
 then $\lim_{x \to 2} f(x)$ is

(A) ln 2 (B) ln 8 (C) ln 16 (D) 4 (E) nonexistent



- 13. The graph of the function f shown in the figure above has a vertical tangent at the point (2,0) and horizontal tangents at the points (1,-1) and (3,1). For what values of x, -2 < x < 4, is f not differentiable?</p>
 - (A) 0 only (B) 0 and 2 only (C) 1 and 3 only (D) 0, 1, and 3 only (E) 0, 1, 2, and 3

14. A particle moves along the *x*-axis so that its position at time *t* is given by $x(t) = t^2 - 6t + 5$. For what value of *t* is the velocity of the particle zero?

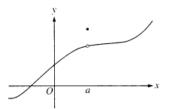
16. If
$$f(x) = \sin(e^{-x})$$
, then $f'(x) =$

- (A) $-\cos(e^{-x})$
- (B) $\cos(e^{-x}) + e^{-x}$
- (C) $\cos(e^{-x}) e^{-x}$
- (D) $e^{-x}\cos(e^{-x})$
- (E) $-e^{-x}\cos(e^{-x})$

- 17. The graph of a twice-differentiable function f is shown in the figure above. Which of the following is true?
 - (A) f(1) < f'(1) < f''(1)
 - (B) f(1) < f''(1) < f'(1)
 - (C) f'(1) < f(1) < f''(1)
 - (D) f''(1) < f(1) < f'(1)
 - (E) f''(1) < f'(1) < f(1)
- 18. An equation of the line tangent to the graph of $y = x + \cos x$ at the point (0,1) is

(A) y = 2x+1 (B) y = x+1 (C) y = x (D) y = x-1 (E) y = 0

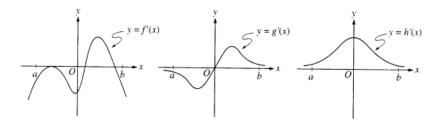
- 19. If $f''(x) = x(x+1)(x-2)^2$, then the graph of f has inflection points when x =
 - (A) -1 only (B) 2 only (C) -1 and 0 only (D) -1 and 2 only (E) -1, 0, and 2 only


- 22. The function f is given by $f(x) = x^4 + x^2 2$. On which of the following intervals is f increasing?
 - (A) $\left(-\frac{1}{\sqrt{2}},\infty\right)$ (B) $\left(-\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}\right)$
 - (C) (0,∞)
 - (D) (−∞,0)
 - (E) $\left(-\infty, -\frac{1}{\sqrt{2}}\right)$
- 24. The maximum acceleration attained on the interval $0 \le t \le 3$ by the particle whose velocity is given by $v(t) = t^3 - 3t^2 + 12t + 4$ is

(A) 9	(B)	12	(C)	14	(D)	21	(E)	40
		Г						

		4
f(x) = 1	k	2

- 26. The function f is continuous on the closed interval [0,2] and has values that are given in the table above. The equation $f(x) = \frac{1}{2}$ must have at least two solutions in the interval [0,2] if k =
 - (A) 0 (B) $\frac{1}{2}$ (C) 1 (D) 2 (E) 3
- 28. If $f(x) = \tan(2x)$, then $f'\left(\frac{\pi}{6}\right) =$ (A) $\sqrt{3}$ (B) $2\sqrt{3}$ (C) 4 (D) $4\sqrt{3}$ (E) 8


Graphing Calculator Allowed

- 76. The graph of a function f is shown above. Which of the following statements about f is false?
 - (A) f is continuous at x = a.
 - (B) f has a relative maximum at x = a.
 - (C) x = a is in the domain of f.
 - (D) $\lim_{x \to a^+} f(x)$ is equal to $\lim_{x \to a^-} f(x)$.
 - (E) $\lim_{x \to a} f(x)$ exists.
- 77. Let f be the function given by $f(x) = 3e^{2x}$ and let g be the function given by $g(x) = 6x^3$. At what value of x do the graphs of f and g have parallel tangent lines?
 - (A) -0.701
 (B) -0.567
 (C) -0.391
 (D) -0.302
 - (E) -0.258
- 78. The radius of a circle is decreasing at a constant rate of 0.1 centimeter per second. In terms of the circumference *C*, what is the rate of change of the area of the circle, in square centimeters per second?
 - (A) $-(0.2)\pi C$
 - (B) -(0.1)C

(C)
$$-\frac{(0.1)C}{2\pi}$$

- (D) $(0.1)^2 C$
- (E) $(0.1)^2 \pi C$

- 79. The graphs of the derivatives of the functions f, g, and h are shown above. Which of the functions f, g, or h have a relative maximum on the open interval a < x < b?
 - (A) f only
 - (B) g only
 - (C) h only
 - (D) f and g only
 - (E) *f*, *g*, and *h*
- 80. The first derivative of the function f is given by $f'(x) = \frac{\cos^2 x}{x} \frac{1}{5}$. How many critical values

does f have on the open interval (0,10)?

- (A) One
- (B) Three
- (C) Four
- (D) Five
- (E) Seven
- 81. Let f be the function given by f(x) = |x|. Which of the following statements about f are true?
 - I. f is continuous at x = 0.
 - II. f is differentiable at x = 0.
 - III. f has an absolute minimum at x = 0.
 - (A) I only (B) II only (C) III only (D) I and III only (E) II and III only
- 83. If $a \neq 0$, then $\lim_{x \to a} \frac{x^2 a^2}{x^4 a^4}$ is

(A)
$$\frac{1}{a^2}$$
 (B) $\frac{1}{2a^2}$ (C) $\frac{1}{6a^2}$ (D) 0 (E) nonexistent

87. Which of the following is an equation of the line tangent to the graph of $f(x) = x^4 + 2x^2$ at the point where f'(x) = 1?

(A) y = 8x - 5

- (B) y = x + 7
- (C) y = x + 0.763
- (D) y = x 0.122
- (E) y = x 2.146

- 89. If g is a differentiable function such that g(x) < 0 for all real numbers x and if $f'(x) = (x^2 4)g(x)$, which of the following is true?
 - (A) f has a relative maximum at x = -2 and a relative minimum at x = 2.
 - (B) f has a relative minimum at x = -2 and a relative maximum at x = 2.
 - (C) f has relative minima at x = -2 and at x = 2.
 - (D) f has relative maxima at x = -2 and at x = 2.
 - (E) It cannot be determined if f has any relative extrema.
- 90. If the base *b* of a triangle is increasing at a rate of 3 inches per minute while its height *h* is decreasing at a rate of 3 inches per minute, which of the following must be true about the area *A* of the triangle?
 - (A) A is always increasing.
 - (B) A is always decreasing.
 - (C) A is decreasing only when b < h.
 - (D) A is decreasing only when b > h.
 (E) A remains constant.
- 91. Let f be a function that is differentiable on the open interval (1,10). If f(2) = -5, f(5) = 5, and f(9) = -5, which of the following must be true?
 - I. f has at least 2 zeros.
 - II. The graph of f has at least one horizontal tangent.
 - III. For some c, 2 < c < 5, f(c) = 3.
 - (A) None
 - (B) I only
 - (C) I and II only
 - (D) I and III only
 - (E) I, II, and III